# Introduction to Thermal and Fluid Engineering

4.11 - 1251 ratings - Source

Introduction to Thermal and Fluid Engineering combines coverage of basic thermodynamics, fluid mechanics, and heat transfer for a one- or two-term course for a variety of engineering majors. The book covers fundamental concepts, definitions, and models in the context of engineering examples and case studies. It carefully explains the methods used to evaluate changes in equilibrium, mass, energy, and other measurable properties, most notably temperature. It then also discusses techniques used to assess the effects of those changes on large, multi-component systems in areas ranging from mechanical, civil, and environmental engineering to electrical and computer technologies. Includes a motivational student study guide on CD to promote successful evaluation of energy systems This material helps readers optimize problem solving using practices to determine equilibrium limits and entropy, as well as track energy forms and rates of progress for processes in both closed and open thermodynamic systems. Presenting a variety of system examples, tables, and charts to reinforce understanding, the book includes coverage of: How automobile and aircraft engines work Construction of steam power plants and refrigeration systems Gas and vapor power processes and systems Application of fluid statics, buoyancy, and stability, and the flow of fluids in pipes and machinery Heat transfer and thermal control of electronic components Keeping sight of the difference between system synthesis and analysis, this book contains numerous design problems. It would be useful for an intensive course geared toward readers who know basic physics and mathematics through ordinary differential equations but might not concentrate on thermal/fluids science much further. Written by experts in diverse fields ranging from mechanical, chemical, and electrical engineering to applied mathematics, this book is based on the assertion that engineers from all walks absolutely must understand energy processes and be able to quantify them.The usual situation is where a = 0 in which case aP = g (12.2) Thus, fluid statics deals with problems that are associated with fluids at rest. A common pressure measuring device, the manometer, is based on principles of fluid statics.

 Title : Introduction to Thermal and Fluid Engineering Author : Allan D. Kraus, James R. Welty, Abdul Aziz Publisher : CRC Press - 2011-09-06